4.9
2 hr 41 min ago
PACIFIC-ANTARCTIC RIDGE
Nov 30, 2025 @12:18 UTC
SEAQUAKE
5.3
4 hr 54 min ago
KERMADEC ISLANDS REGION
Nov 30, 2025 @10:05 UTC
SEAQUAKE
4.7
6 hr 28 min ago
MASOHI, INDONESIA
Nov 30, 2025 @08:31 UTC
SEAQUAKE
4.5
12 hr 8 min ago
VINCHINA, ARGENTINA
Nov 30, 2025 @02:51 UTC
EARTHQUAKE
5.3
15 hr 17 min ago
KERMADEC ISLANDS REGION
Nov 29, 2025 @23:42 UTC
SEAQUAKE
5.8
16 hr 12 min ago
WEST OF MACQUARIE ISLAND
Nov 29, 2025 @22:47 UTC
SEAQUAKE
4.9
18 hr 58 min ago
BASCO, PHILIPPINES
Nov 29, 2025 @20:01 UTC
SEAQUAKE
4.8
23 hr 36 min ago
GORONTALO, INDONESIA
Nov 29, 2025 @15:23 UTC
SEAQUAKE
4.5
1 day ago
VANUATU REGION
Nov 29, 2025 @13:41 UTC
SEAQUAKE
4.6
1 day ago
COLONIA, MICRONESIA
Nov 29, 2025 @13:29 UTC
EARTHQUAKE
4.7
1 day ago
SCOTIA SEA
Nov 29, 2025 @12:15 UTC
SEAQUAKE
5.0
1 day ago
SOLA, VANUATU
Nov 29, 2025 @11:50 UTC
SEAQUAKE
5.9
1 day ago
WEST OF MACQUARIE ISLAND
Nov 29, 2025 @08:03 UTC
SEAQUAKE
4.5
1 day ago
MARIANA ISLANDS REGION
Nov 29, 2025 @06:57 UTC
SEAQUAKE
4.9
1 day ago
EL ROSARIO, EL SALVADOR
Nov 29, 2025 @06:52 UTC
SEAQUAKE
4.5
1 day ago
TUAL, INDONESIA
Nov 29, 2025 @06:33 UTC
SEAQUAKE
5.1
1 day ago
KIETA, PAPUA NEW GUINEA
Nov 29, 2025 @06:05 UTC
SEAQUAKE
4.9
1 day ago
GEORGETOWN, SAINT HELENA
Nov 29, 2025 @04:20 UTC
SEAQUAKE
5.1
1 day ago
SEVERO-KURIL’SK, RUSSIA
Nov 29, 2025 @03:34 UTC
SEAQUAKE
4.8
1 day ago
SOUTH OF TONGA
Nov 29, 2025 @02:31 UTC
SEAQUAKE

M5.5 - Nikolski, Alaska

Magnitude

5.5 - Richter scale

Depth

0.8 Km

Location

Nikolski, Alaska (85km SE)
LAT 52.3364, LON -168.0685

Date-Time

Nov 21, 2022 15:09:29 UTC
Nov 21, 2022 06:09:29 UTC -09:00 at epicenter

Source

USGS NEIC (WDCS-D)

Event ID(s)

ak022exqnx93

Population

18 people (est. 100km radius)

Tectonic Summary

Seismotectonics of Alaska

The Aleutian arc extends approximately 3,000 km from the Gulf of Alaska in the east to the Kamchatka Peninsula in the west. It marks the region where the Pacific plate subducts into the mantle beneath the North America plate. This subduction is responsible for the generation of the Aleutian Islands and the deep offshore Aleutian Trench.

The curvature of the arc results in a westward transition of relative plate motion from trench-normal (i.e., compressional) in the east to trench-parallel (i.e., translational) in the west, accompanied by westward variations in seismic activity, volcanism, and overriding plate composition. The Aleutian arc is generally divided into three regions: the western, central, and eastern Aleutians. Relative to a fixed North America plate, the Pacific plate is moving northwest at a rate that increases from roughly 60 mm/yr at the arc's eastern edge to 76 mm/yr near its western terminus. The eastern Aleutian arc extends from the Alaska Peninsula in the east to the Fox Islands in the west. Motion along this section of the arc is characterized by arc-perpendicular convergence and Pacific plate subduction beneath thick continental lithosphere. This region exhibits intense volcanic activity and has a history of megathrust earthquakes.

The central Aleutian arc extends from the Andreanof Islands in the east to the Rat Islands in the west. Here, motion is characterized by westward-increasing oblique convergence and Pacific plate subduction beneath thin oceanic lithosphere. Along this portion of the arc, the Wadati-Benioff zone is well defined to depths of approximately 200 km. Despite the obliquity of convergence, active volcanism and megathrust earthquakes are also present along this margin.

The western Aleutians, stretching from the western end of the Rat Islands in the east to the Komandorskiye Ostrova (Commander Islands), Russia, in the west, is tectonically different from the central and eastern portions of the arc. The increasing component of transform motion between the Pacific and North America plates is evidenced by diminishing active volcanism; the last active volcano is located on Buldir Island, in the far western portion of the Rat Island chain. Additionally, this portion of the subduction zone has not hosted large earthquakes or megathrust events in recorded history. Instead, the largest earthquakes in this region are generally shallow, predominantly strike-slip events with magnitudes between M5-6. Deeper earthquakes do occur, albeit rather scarcely and with small magnitudes (M<4), down to approximately 50 km.

Most of the seismicity along the Aleutian arc results from thrust faulting that occurs along the interface between the Pacific and North America plates, extending from near the base of the trench to depths of 40 to 60 km. Slip along this interface is responsible for generating devastating earthquakes. Deformation also occurs within the subducting slab in the form of intermediate-depth earthquakes that can reach depths of 250 km. Normal faulting events occur in the outer rise region of the Aleutian arc resulting from the bending of the oceanic Pacific plate as it enters the Aleutian trench. Additionally, deformation of the overriding North America plate generates shallow crustal earthquakes.

The Aleutian arc is a seismically active region, evidenced by the many moderate to large earthquakes occurring each year. Since 1900, this region has hosted twelve large earthquakes (M>7.5) including the May 7, 1986 M8.0 Andreanof Islands, the June 10, 1996 M7.9 Andreanof Islands, and the November 17, 2003 M7.8 Rat Islands earthquakes. Six of these great earthquakes (M8.3 or larger) have occurred along the Aleutian arc that together have ruptured almost the entire shallow megathrust contact. The first of these major earthquakes occurred on August 17, 1906 near the island of Amchitka (M8.3) in the western Aleutian arc. However, unlike the other megathrust earthquakes along the arc, this event is thought to have been an intraplate event occurring in the shallow slab beneath the subduction zone interface.

The first megathrust event along the arc during the 20th century was the November 10, 1938 M8.6 Shumagin Island earthquake. This event ruptured an approximately 300 km long stretch of the arc from the southern end of Kodiak Island to the northern end of the Shumagin Islands and generated a small tsunami that was recorded as far south as Hawaii.

The April 1, 1946 M8.6 Unimak Island earthquake, located in the central Aleutian arc, was characterized by slow rupture followed by a devastating Pacific-wide tsunami that was observed as far south as the shores of Antarctica. Although damage from earthquake shaking was not severe locally, tsunami run-up heights were recorded as high as 42 m on Unimak Island and tsunami waves in Hilo, Hawaii also resulted in casualties. The slow rupture of this event has made it difficult to constrain the focal mechanism and depth of the earthquake, though it is thought to have been an interplate thrust earthquake.

The next megathrust earthquake occurred along the central portion of the Aleutian arc near the Andreanof Islands on March 9, 1957, with a magnitude of M8.6. The rupture length of this event was approximately 1200 km, making it the longest observed aftershock zone of all the historic Aleutian arc events. Although only limited seismic data from this event are still available, significant damage and tsunamis were observed on the islands of Adak and Unimak with tsunami heights of approximately 13 m.

The easternmost megathrust earthquake was the March 28, 1964 M9.2 Prince William Sound earthquake, currently the second largest recorded earthquake in the world. The event had a rupture length of roughly 700 km extending from Prince William Sound in the northeast to the southern end of Kodiak Island in the southwest. Extensive damage was recorded in Kenai, Moose Pass, and Kodiak but significant shaking was felt over a large region of Alaska, parts of western Yukon Territory, and British Columbia, Canada. Property damage was the largest in Anchorage, as a result of both the main shock shaking and the ensuing landslides. This megathrust earthquake also triggered a devastating tsunami that caused damage along the Gulf of Alaska, the West Coast of the United States, and in Hawaii.

The westernmost Aleutians megathrust earthquake followed a year later on February 4, 1965. This M8.7 Rat Islands earthquake was characterized by roughly 600 km of rupture. Although this event is quite large, damage was low owing to the region's remote and sparsely inhabited location. A relatively small tsunami was recorded throughout the Pacific Ocean with run-up heights up to 10.7 m on Shemya Island and flooding on Amchitka Island.

Although the Aleutian arc is highly active, seismicity is rather discontinuous, with two regions that have not experienced a large (M>8.0) earthquake in the past century: the Komandorskiye Ostrova (Commander Islands) in the western Aleutians and the Shumagin Islands in the east. Due to the dominantly transform motion along the western arc, there is potential that the Komandorskiye Ostrova (Commander Islands) will rupture in a moderate to large strike-slip earthquake in the future. The Shumagin Islands region may also have high potential for hosting a large rupture in the future, though it has been suggested that little strain is being accumulated along this section of the subduction zone, and thus associated hazards may be reduced.